一.实现
在Linux中,隧道的实现主要基于两个文件new_tunnel.c和ipip.c
同时Linux定义了一种新的协议类型--IPIP(IPPROTO_IPIP),与上面所说封包类型类似。
基本思路
在Linux中IP Tunnel的实现也分为两个部件:封装部件和解封部件,分别司职发送和接收。但这两个部分是在不同的层次以不同的方式实现的。封装部件是在数据链路层以虚设备的方式实现。所有源代码见
/usr/src/linux/drivers/net/new_tunnel.c
为实现封装,Linux实现一个称为tunl的网络设备(类似loopback设备),此设备具有其他网络设备共有的特征,对于使用此设备的上层应用来说,对这些网络设备不加区分,调用及处理方法当然也完全一样。
tunnel_init()和tunnel_xmit()是new_tunnel.c中的两个主要过程。
tunnel_init()初始化与设备tunl相关的device结构。
而tunnel_xmit()在从tunl设备发送数据时被调用,tunl设备作为实现IP隧道技术的封装部分,在此过程中完成对相应的数据报进行封装所需的全部操作,形成IPIP类型的IP包,并重新转发此数据包(ip_forward())。
解码器在IP的上层实现,系统把它作为一个虚的传输层(实际上与传输层毫无关系),具体处理见文件
/usr/src/linux/net/ipv4/ipip.c。
我们知道,每一个IP数据包均交由ip_rcv函数处理,在进行一些必要的判断后,ip_rcv对于发送给本机的数据包将交给上层处理程序。对于IPIP包来说,其处理函数是ipip_rcv(就如TCP包的处理函数是tcp_rcv一样,IP层不加区分)。也就是说,当一个目的地址为本机的封包到达后,ip_rcv函数进行一些基本检查并除去IP头,然后交由ipip_rcv解封。ipip_rcv所做的工作就是去掉封包头,还原数据包,然后把还原后的数据包放入相应的接收队列(netif_rx())。
从以上IP Tunnel实现的思想来看,思路十分清晰,但由于IP Tunnel的特殊性,其实现的层次并不单纯。实际上,它的封装和解封部件不能简单地象上面所说的那样分层。tunl设备虽应算进链路层,但其发送程序中做了更多的工作,如制作IPIP头及新的IP头(这些一般认为是传输层或网络层的工作),调用ip_forward转发新包也不是一个网络设备应当做的事。可以说,tunl借网络设备之名,一把抓干了不少工作,真是‘高效’。而解封部件宏观上看在网络层之上,解出IPIP头,恢复原数据包是它分内的事,但在它解出数据包(即原完整的协议数据包)后,它把这个包放入相应的协议接收队列。这种事可不是一个上层协议干的,这是网络设备中断接收程序的义务。看到了,在这点上,它好象到了数据链路层。
二.协议
1. 点对点隧道协议(PPTP)
PPTP协议允许对IP,IPX或NetBEUI数据流进行加密,然后封装在IP包头中通过企业IP网络或公共互联网络发送。
2. 第2层隧道协议(L2TP)
L2TP协议允许对IP,IPX或NetBEUI数据流进行加密,然后通过支持点对点数据报传递的任意网络发送,如IP,X.25,桢中继或ATM。
3.安全IP(IPSec)隧道模式
IPSec隧道模式允许对IP负载数据进行加密,然后封装在IP包头中通过企业IP网络或公共IP互联网络如Internet发送。
隧道协议
为创建隧道,隧道的客户机和服务器双方必须使用相同的隧道协议。
隧道技术可以分别以第2层或第3层隧道协议为基础。上述分层按照开放系统互联(OSI)的参考模型划分。第2层隧道协议对应OSI模型中的数据链路层,使用桢作为数据交换单位。PPTP,L2TP和L
提供PPTP客户机和PPTP服务器之间的加密通信。PPTP客户机是指运行了该协议的PC机,如启动该协议的Windows95/98;PPTP服务器是指运行该协议的服务器,如启动该协议的WindowsNT服务器。PPTP是PPP协议的一种扩展。它提供了一种在互联网上建立多协议的安全虚拟专用网(VPN)的通信方式。远端用户能够透过任何支持PPTP的ISP访问公司的专用网。
通过PPTP,客户可采用拨号方式接入公用IP网。拨号用户首先按常规方式拨到ISP的接入服务器(NAS),建立PPP连接;在此基础上,用户进行二次拨号建立到PPTP服务器的连接,该连接称为PPTP隧道,实质上是基于IP协议的另一个PPP连接,其中的IP包可以封装多种协议数据,包括TCP/IP、IPX和NetBEUI。PPTP采用了基于RSA公司RC4的数据加密方法,保证了虚拟连接通道的安全。对于直接连到互联网的用户则不需要PPP的拨号连接,可以直接与PPTP服务器建立虚拟通道。PPTP把建立隧道的主动权交给了用户,但用户需要在其PC机上配置PPTP,这样做既增加了用户的工作量,又会给网络带来隐患。另外,PPTP只支持IP作为传输协议。
第2层转发(L
L
第2层隧道协议(L2TP)
L2TP隧道协议是典型的被动式隧道协议,它结合了L
L2TP主要由LAC(L2TP Access Concentrator) 和LNS(L2TP Network Server) 构成,LAC支持客户端的L2TP,用于发起呼叫、接收呼叫和建立隧道;LNS是所有隧道的终点,LNS终止所有的PPP流。在传统的PPP连接中,用户拨号连接的终点是LAC,L2TP使得PPP协议的终点延伸到LNS。
L2TP的好处在于支持多种协议,用户可以保留原有的IPX、Appletalk等协议或公司原有的IP地址。L2TP还解决了多个PPP链路的捆绑问题,PPP链路捆绑要求其成员均指向同一个NAS(Network Access Server),L2TP可以使物理上连接到不同NAS的PPP链路,在逻辑上的终结点为同一个物理设备。L2TP还支持信道认证,并提供了差错和流量控制。
L2TP利用IPsec增强了安全性,支持数据包的认证、加密和密钥管理。L2TP/IPSec因此能为远程用户提供设计精巧并有互操作性的安全隧道连接。这对安全的远程访问和安全的网关之间连接来说,它是一个很好的解决方案。因此,安全的VPN需要同时解决好L2TP和IPSec这两个不同的问题。L2TP协议解决了穿过IP网络的不同用户协议的转换问题;IPSec协议(加密/解密协议)解决了通过公共网络传输信息的保密问题。
IP网上的L2TP使用UDP和一系列的L2TP消息对隧道进行维护。L2TP同样使用UDP将L2TP协议封装的PPP桢通过隧道发送。可以对封装PPP桢中的负载数据进行加密或压缩。 PPTP与L2TP
PPTP和L2TP都使用PPP协议对数据进行封装,然后添加附加包头用于数据在互联网络上的传输。尽管两个协议非常相似,但是仍存在以下几方面的不同:
PPTP要求互联网络为IP网络。L2TP只要求隧道媒介提供面向数据包的点对点的连接。L2TP可以在IP(使用UDP),桢中继永久虚拟电路(PVCs),X.25虚拟电路(VCs)或ATM VCs网络上使用。
PPTP只能在两端点间建立单一隧道。L2TP支持在两端点间使用多隧道。使用L2TP,用户可以针对不同的服务质量创建不同的隧道。
L2TP可以提供包头压缩。当压缩包头时,系统开销(overhead)占用4个字节,而PPTP协议下要占用6个字节。
L2TP可以提供隧道验证,而PPTP则不支持隧道验证。但是当L2TP或PPTP与IPSEC共同使用时,可以由IPSEC提供隧道验证,不需要在第2层协议上验证隧道。
IPSec隧道模式
IPSec在IP层上对数据包进行高强度的安全处理,提供数据源地验证、无连接数据完整性、数据机密性、抗重播和有限业务流机密性等安全服务。各种应用程序可以享用IP层提供的安全服务和密钥管理,而不必设计和实现自己的安全机制,因此减少密钥协商的开销,也降低了产生安全漏洞的可能性。IPSec可连续或递归应用,在路由器、防火墙、主机和通信链路上配置,实现端到端安全、虚拟专用网络(VPN)和安全隧道技术。
IPSEC是第3层的协议标准,支持IP网络上数据的安全传输。本文将在“高级安全”一部分中对IPSEC进行详细的总体介绍,此处仅结合隧道协议讨论IPSEC协议的一个方面。除了对IP数据流的加密机制进行了规定之外,IPSEC还制定了IPoverIP隧道模式的数据包格式,一般被称作IPSEC隧道模式。一个IPSEC隧道由一个隧道客户和隧道服务器组成,两端都配置使用IPSEC隧道技术,采用协商加密机制。
为实现在专用或公共IP网络上的安全传输,IPSEC隧道模式使用的安全方式封装和加密整个IP包。然后对加密的负载再次封装在明文IP包头内通过网络发送到隧道服务器端。隧道服务器对收到的数据报进行处理,在去除明文IP包头,对内容进行解密之后,获的最初的负载IP包。负载IP包在经过正常处理之后被路由到位于目标网络的目的地。
IPSEC隧道模式具有以下功能和局限:
只能支持IP数据流
工作在IP栈(IPstack)的底层,因此,应用程序和高层协议可以继承IPSEC的行为。
由一个安全策略(一整套过滤机制)进行控制。安全策略按照优先级的先后顺序创建可供使用的加密和隧道机制以及验证方式。当需要建立通讯时,双方机器执行相互验证,然后协商使用何种加密方式。此后的所有数据流都将使用双方协商的加密机制进行加密,然后封装在隧道包头内。